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The design of blanking processes requires the availability of a procedure able to deal with both tooling and
mechanical properties of the workpiece material (blank thickness, hardness, ductility, etc.). This research
presents the development and comparison of two models to predict the quality of the blanked edge rep-
resented by burrs height, the first model is an artificial neural network (ANN) based, while the second
model is a multiple regression analysis (MRA) based. Finite Element modeling of the blanking process was
used to generate the data for both models. Both ANN and MRA are able to give good prediction results,
however, ANN still more accurate because it deals efficiently with hidden nonlinear relations when com-
pared to MRA. The comparison between experimental and model results shows that average absolute
relative error in the case of ANN was <2.20% for carbon steel and 4.85% for corrosion-resistant steel
(CRES) compared to 15.18% for carbon steel and 14.22% for CRES obtained from the second order MRA.
Therefore, by using ANN outputs, satisfactory results can be estimated rather than measured and hence
reduce testing time and cost.

Keywords artificial neural networks, blanking, burrs height,
regression, steel

1. Introduction

Research in the control of blanking operations is currently
being performed to improve monitoring and control of
components quality; other motivations include the reduction
of reject volume, reduction of manual quality control, and the
reduction of cost of replacing tools after catastrophic failure.
Finite element analysis (FEA) modeling was widely used in the
area of sheet metal forming with the development of sophis-
ticated models of fracture and damage mechanics, researchers
were able to obtain numerical tools to analyze the blanking
process. However, FEA allow many aspects of the blanking
process to be analyzed in detail under various conditions in a
research environment. Artificial intelligence techniques like
artificial neural networks (ANN), fuzzy logic, and genetic
algorithms have been widely used in the recent years due to
their superior prediction and optimization abilities compared to
other statistical models.

Sheet metal blanking is one of the main industrial processes
for producing mechanical parts; therefore attention must be
focused on its modeling. In this study, multiple regression
analysis (MRA) and backpropagation neural network algorithm
were used to predict the burrs height formation on blanked parts
based on a set of input parameters. The major advantage of the
neural network predictions is that the model can estimate burrs
height very fast and accurately. Through the investigation, it
becomes clear that the ANN method can be used either as
prediction or optimization techniques, which in turn reduce the
trial and experimental errors to design a sheet metal blanking
process. Moreover, the proposed ANN can be used to
contribute toward the development of an on-line assessment
system of burrs height evolution during the blanking processes.

Using of ANN in the area of sheet metal shearing is still
attractive and competitive compared to other prediction meth-
ods. For example, Wadi and Balendra (Ref 1, 2) proposed a
method of neural networks (NN) to monitor product quality of
blanking by assessing changes in tool geometry, material
quality, and tool configuration. Hambli (Ref 3) developed a
backpropagation NN model to predict the burr height based on
data that was obtained through finite element modeling; the
correctness of the used finite element model was verified
experimentally. Hambli changed two major parameter sets;
basically the tool wear state and punch-die clearance. NN was
able to reproduce the training data with good accuracy,
however, in this study, the effects of other parameters on burr
height are investigated, these parameters include punch-die
clearance, blank thickness, and blank holder force (BHF).
Hambli and Guerin (Ref 4) developed a methodology to obtain
the optimum punch-die clearance for a given sheet material by
the simulation of the blanking process. The proposed approach
combines predictive finite element and neural network model-
ing of the leading blanking parameters.

In this study, the numerical results of damage and fracture
obtained by finite element were utilized to train the developed
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simulation environment based on back propagation neural
network modeling. Husson et al. (Ref 5) used finite elements
models using the commercial finite elements code ABAQUS to
study the influence of process parameters such as punch-die
clearance, tools geometry, and friction on blanking force and
blank profile (sheared edge). This study focuses on the finite
elements simulations of a blanking process using a new
viscoplastic model for the evolution of the flow stress coupled
with a new damage model. The finite elements simulation
predictions have been compared with experimental results.
Then, the finite elements simulations have been used to assess
the influence of punch-die clearance as well as the influence of
tool wear and friction on sheared edge quality.

Quality control and process monitoring in sheet metal
manufacturing processes have been investigated by many
researchers. Al-Momani et al. (Ref 6, 7) presented an attempt
to optimize the blanking process using systematic experimen-
tal design, numerical simulation, and Monte Carlo simulation.
Results show the effectiveness of combining the mentioned
techniques to reduce the cost of optimizing the blanking
process in addition to reducing manufacturing lead time. A
robust process against variations in its conditions was
obtained. Garcia (Ref 8) studied the stamping process to
avoid production breakdowns and to improve the reliability of
the stamping process. He used an integrated automatic control
which includes a system based on the use of sensors, artificial
vision, and NN for the diagnosis and the prediction of the
process results. A second system based on fuzzy logic was
also used for the automatic control system. In-process control
principles were extensively reported by researchers for
manufacturing processes outside the area of sheet metal
manufacturing as well, for example turning, on-line monitor-
ing of tool wear (Ref 9–11).

Other researches dealt with conditional based maintenance
in sheet metal blanking (Ref 12–14). Some complicated
stochastic models have been proposed such as hidden Markov
model (Ref 15), but these models are complicated and hard to
be applied to the real in-process monitoring.

2. Multiple Regression Analysis

Regression analysis is a statistical tool for the investigation
of relationships between variables. Usually, the investigator
seeks to ascertain the effect of one variable upon another. MRA
is widely used to model the cause and effect relationship
between inputs and outputs and can be generally expressed as

Y ¼ f ðX1;X2; . . . ;Xn; h1; h2; . . . ; hnÞ þ e ðEq 1Þ

where Y is a dependent variable (i.e., output variable),
X1,…,Xn are independent or explanatory variables (i.e., input
variables), h1� hp are regression parameters, e is a random
error, which is assumed to be normally distributed with zero
mean and constant variance r2, and f is a known function,
which may be linear or nonlinear. If f is linear, then Eq 1
becomes a multiple linear regression model which can be
expressed as:

Y ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn þ e ðEq 2Þ

where b0 is a constant and called intercept. Different func-
tional forms decide different MRA models.

3. Artificial Neural Networks (ANN)

Artificial neural networks have highly interconnected struc-
ture similar to brain cells of human NN and consist of large
number of simple processing elements called neurons, which
are arranged in different layers in the network. So artificial
neural network is considered a massive parallel distributed
processor made up of simple processing units called neurons.
This artificial intelligence model has a natural propensity for
storing experimental knowledge and making it available for
use. It mimics the brain in two respects:

1. The network acquires the knowledge from its environ-
ment through a learning process.

2. Interconnection weights are adjusted and used to store
and recall the acquired knowledge.

Each network consists of an input layer, an output layer, and
one or more hidden layers. One of the well-known advantages
of ANN is its ability to learn from the sample set, which is
called training set, in a supervised or unsupervised learning
process. Once the architecture of network is defined, then
through learning process, weights are calculated so as to present
the desire output (See Fig. 1) (Ref 16–18).

Learning in ANN is an adaptive process where the network
has the ability to update its parameters (mainly weights between
nodes). Network parameters are changed according to pre-
defined equations called the learning rules. The learning rules
usually derived from predefined error measures. An example of
an error measure in a supervised learning procedure is the
squared error between the output of the model and the desired
output. This requires knowledge of the desired value for a given
input. In most ANN algorithms, a minimization objective
function is performed using gradient descent optimization
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Fig. 1 Feedforward backpropagation ANN training algorithm
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methods to minimize the squared error between the predicted
outputs of the model and the actual outputs.

The training process must be stopped at the right time;
otherwise, too long training will result in overlearning network.
Overlearning means that the neural network reaches a limit
where it extracts too much information from the particular
training cases (examples) and loses the relevant information of
the general case (overall training set).

Usually, the neural network performance is tested with a
testing set which is not part of the training set. Testing can be
done after completion of training process or during the training
process where a testing cycle is performed upon completion of
predetermined training cycles (in this study, the testing cycle
was performed every 100 cycle of training cycles). By
following this method, ANN will modify its weights based
on the relative error it gets from the testing cycle, which in turn
insure accuracy and less training time. However, the testing set
can be considered as a set of examples or cases that the ANN
has not seen and used primarily to check the reproducibility of
the ANN in predicting output for new cases.

Cross-validation methods can also be used to avoid
overlearning. In cross-validation, the ANN has the ability to
switch the places of the training set and the testing set and
compares the performance of the resulting networks.

4. Experimental Procedures

4.1 Background of Burrs

Burrs formation during blanking operation is one of the
problems that face the blanking community. Burrs increase
tools wear and reduce its life, in addition it affect the blanked
part quality which may result either on a post blanking steps to
remove burrs or to scrap the product. A schematic geometry of
the blanking edge including burrs is shown in Fig. 2.

4.2 Materials Property Measurement

Tensile test was performed into two stages to provide
information on the properties of materials under uniaxial tensile
stresses. The purpose of the first stage was to get the stress-
strain diagram while the purpose of the second stage was to get
the modulus of elasticity and Poisson�s ratio. Instron (1195)
universal testing machine was used to apply tensile forces by
means of a moving crosshead. The machine is equipped with a
load cell that provides an output voltage proportional to the
applied load and has a nominal capacity of 100 KN. An
extensometer was installed to measure the elongation of the
specimen which provides an output voltage that is proportional
to the specimen elongation. A recording chart is used to
construct a load-deformation curve. Strain indicator in addition
to switch and balance unit were used in measuring the strain
gage readings for getting the modulus of elasticity and
Poisson�s ratio. Tensile tests were conducted on dog-bone
shaped samples in accordance with American Society of
Testing Methods E 8M-89. The load-elongation diagram for
both materials (carbon steel and CRES) is shown in Fig. 3. The
modulus of elasticity (E) was obtained as the slope of a straight
line represents the relationship of stress versus axial strain,
while Poisson�s ratio (e) was obtained as the slope of a straight
line represents the relationship of axial strain versus lateral

strain. Table 1 summarizes the mechanical characteristics of the
used carbon steel and corrosion-resistance steel (CRES).

4.3 Experimental Methodology

A detailed description of the experimental methodology can
be found in (Ref 6, 7). Finite Element Simulation was
performed as a part of this study. A simulation of an axis-
symmetric blanking operation of sheet metal was performed.
The simulation is designed to study the previously mentioned
parameters at their corresponding levels (Table 2). Eighty
simulations were performed for the above configuration
according to the whole combinations of parameters. Simula-
tions were conducted on the commercial finite element software
package ABAQUS/Explicit. The process is simplified by using
a two-dimensional situation, under plane-strain conditions,
since in a normal blanking operation the punch-die clearance is
usually very small in relation to the blank diameter, otherwise,
the deformation will be in a 3-D form. In all simulations, a
circular disc with a diameter of 55 mm has been used as the
blank. Only half of the blank was modeled because the
blanking process is symmetric about a plane along the center of
the blank. In order to assess the quality of the model, a
comparison with experiments is made. A company that deals
with dies and tools manufacturing and steel sheets forming, is
selected for conducting the experiments. For more details
about the FEA and the verifications process, please return
to Al-Momani and Rawabdeh (Ref 6). Figure 4 shows a
schematic representation of the blanking process.

5. Results and Discussion

5.1 Multiple Regression Analysis Results

To establish the prediction model, MINITAB 15 statistical
software package was used to perform the MRA using the
available data. Table 2 shows the independent factors and their
levels that used for developing of the MRA and ANN.

A second order regression model (full quadratic regression
model) was tested to check for any important second order
interactions. The second order regression models are shown in
Tables 3 and 4 for carbon steel and CRES, respectively. In
these models higher values of both R2 and R2(adj.) were
obtained which indicate very good correlation.

Fig. 2 Geometry of the blanked edge (Ref 5)
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In the second order regression model, the adjusted-R2 values
was close to 1.0 and the p-values were close to zero as
presented in Tables 3 and 4 which indicate a goodness of
fitness for this model (Ref 19). Among the three parameters
considered: thickness, clearance and BHF, only clearance and

BHF significantly affect the burrs height independently for a
significance level a = 0.05.

In the case of carbon steel, the final second order regression
model with significant terms (significance level a = 0.05) can
be expressed as follows:

Burr height ¼ 0:08022þ 0:00237X1 � 0:00001X3

þ 0:000051X 2
1 þ 0:000001X1X3 (Eq 3)

where X1 is the clearance (mm); X2 is the thickness (mm);
and X3 is the BHF.

Similarly for CRES, the significant terms that could be
included in the regression model are those with p-value <0.05,
hence the following equation was developed:

Burr height ¼ 0:0477þ 0:002095X1 � 3� 10�6X3

þ 0:000001X1X3 (Eq 4)

where X1 is the clearance (mm); X2 is the thickness (mm);
and X3 is the BHF.

The signs of the parameters in these models can be
examined for the type of relation with response. Positive signs
mean the response output value that will go in the same
direction as the parameter, and negative signs imply the
opposite. To test the prediction performance of the regression
models the absolute relative error (ARE) was computed based
on experimental and predicted values. The ARE is computed
based on the following equation:

ARE(%) ¼ jPredicted value� Experimental valuej
Experimental value

ðEq 5Þ

For the second order model, the maximum ARE in the case
of carbon steel was about 33.96% while average ARE was
about 15.18% for CRES, maximum ARE was 33.25% while
the average ARE was 14.22%. It will be an advantage if we can
get these errors reduced. This leads us to use ANN for
prediction purposes instead of MRA because it has the
tendency to account for hidden trends and relations between
inputs and outputs.

5.2 Response Surface Methodology

Response surface method was used as a graphical repre-
sentation of the second order regression model. See Fig. 5(a)
for 3-D representation. Figure 5(b) shows the contour plot of
the variation of response (burrs height) with changing of both

Fig. 3 Load-elongation diagram for carbon steel and CRES

Table 1 Some mechanical characteristics of the used carbon steel and CRES obtained from the load-elongation diagrams

Material
Yield stress,

MPa
Ultimate tensile
stress, MPa

Ductility as %
elongation

Strain-hardening
exponent

Strength
coefficient, MPa

Modulus of
elasticity, GPa

Poisons
ratio

Carbon Steel 201 296 37.6 0.23546 524.45 201 0.31
CRES 296.54 475 24.4 0.20651 816.44 187 0.29

Table 2 Blanking process factors and their corresponding level values

Factor Number of levels

Level values

Level 1 Level 2 Level 3 Level 4 Level 5

Clearance 5 5 10 15 20 25
Thickness 4 0.5 0.6 0.7 0.8
Blank holder force 2 0 3000

Table 3 Second order regression model for carbon steel

Term Coefficient SE coef. T p

Constant 0.080216 0.038908 2.062 0.048
Clearance 0.002366 0.000983 2.408 0.022
Thickness �0.05766 0.116916 �0.493 0.625
BHF �0.00001 0.000004 �2.761 0.01
Clearance*clearance 0.000051 0.000021 2.43 0.021
Thickness*thickness 0.045782 0.088583 0.517 0.609
Clearance*thickness �0.00153 0.00112 �1.361 0.183
Clearance*BHF 0.000001 0 13.68 0
Thickness*BHF 0.000004 0.000005 0.802 0.429

S = 0.00560245; PRESS = 0.00156979; R2 = 98.34%;
R2(pred) = 97.32%; R2(adj.) = 97.91%
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clearance and BHF for carbon steel. It can be concluded that
burrs height is strongly influenced by clearance (Thickness was
fixed at nominal value of 0.65 mm).

In the modeling of blanking process, interaction between the
parameters also plays a leading role. An interaction occurs
when the response changes from a given level of factor
combination to another. That is, the effect of one factor is
dependent upon a second factor. In the present study, among the
factors interactions considered for burrs height, the clearance-
BHF interaction seems significant at 95% confidence level.
This means that the clearance depends on blank-holder force.
On the other hand, clearance-thickness and thickness-BHF are
insignificant at this confidence level. Estimated response
surface for burrs height with relation to the design parameters
of clearance and BHF is shown in Fig. 5(a). It can be seen from
this figure, the burrs height tends to increase considerably with
increase in clearance. However, increasing BHF values do not
greatly affect burrs height. Hence, lowest possible burrs height
is obtained at low clearance values (below 13%) and a low
combination values between clearance and BHF. Similar trend
as that of carbon steel was noticed in case of CRES where a
lower burrs height can be obtained by using low values of
clearance and BHF. This can be seen in Fig. 6(a) and (b).

5.3 Artificial Neural Networks Results

As mentioned before, the ANNs were constructed with three
inputs: clearance (mm), sheet metal thickness (mm), and BHF

(N). Two hidden layers were used in each ANN, and one output
node; burrs height (mm). The number of neurons in the hidden
layer is determined experimentally by selecting some hidden
neuron numbers where the goal is to optimize the learning
curve with lowest possible error and lowest training cycles. In
this study, a trial and error method is performed to optimize the
number of neurons in the hidden layers. It was found that the
best ANN structure is that with two hidden layers (seven
neurons in the first hidden layer and four neurons in the second
hidden layer) in the case of carbon steel. This gives ANN
architecture of (3-7-4-1) (Fig. 7). Similarly in the case of
CRES, the following architecture (3-7-7-1) fitted well (Fig. 8).

A data set consists of 40 experimental data points for each
material (40 experimental points for carbon steel and 40
experimental examples for CRES) were used to construct fully
developed feed forward back propagation networks. Among
these 40 data point, 30 examples were used as training
examples and the remaining were used in testing process. For
the training problem at hand the following parameters were
found to give good performance and rapid convergence of the
NN: sigmoid logistic was chosen as activation function
between all layers, learning rate and momentum were selected
experimentally to be 0.45 and 0.15, respectively, in the case of
carbon steel and 0.6 and 0.07, respectively, in the case of
CRES. The training process was terminated after 401 and 601
cycles for carbon steel and CRES, respectively. Testing of the
trained network was set to one testing cycle per 100 training

Fig. 4 Schematic representation of the blanking process (Ref 6)

Table 4 Second order regression model for CRES

Term Coefficient SE coef. T p

Constant 0.047653 0.006974 6.833 0
Clearance 0.002095 0.000176 11.894 0
Thickness 0.019713 0.020956 0.941 0.354
BHF �3E�06 0.000001 �4.016 0
Clearance*clearance 0.000001 0.000004 0.375 0.71
Thickness*thickness �0.01558 0.015878 �0.981 0.334
Clearance*thickness �0.0002 0.000201 �0.972 0.338
Clearance*BHF 0.000001 0 60.21 0
Thickness*BHF 0 0.000001 0.108 0.915

S = 0.00100419; PRESS = 0.0000551503; R2 = 99.92%;
R2(pred) = 99.85%; R2(adj.) = 99.89%
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cycles. Testing datasets are used to examine how the networks
are efficient in predicting the new unseen points. If the network
predictability is good enough then the training and testing
processes will be terminated, if not then the ANN will run the
training and testing processes to reach threshold error. When
the training and testing process were finished, the averaged
errors were 0.004691 and 0.002361 for carbon steel and CRES,
respectively.

To test the generalization performance of the trained
network in training and testing processes, the experimental
values were compared to the predicted values resulted from
ANN as shown in Fig. 9 and 10. These two figures show a
good match between experimental and predicted values. Once
the training and testing processes are finished, the ANN can be
recalled to do prediction effectively. To do so, it was found that
the average ARE was 2.20% and the highest relative absolute
error was 10.38% for carbon steel. Similarly, the average ARE
was 4.85% and the highest relative absolute error was 10.24%
for CRES. Table 5 summarizes the different parameters of the
ANNs.

5.4 Comparison Between MRA and ANN Prediction Models

Now, which prediction method is better and when each one
should be used to predict and optimize the blanking process? In
the case of developing empirical relations, MRA model is
preferred over ANN model because it is an explicit model while
the ANN model is a black box. In the other direction, when data
are sparse or not generated from designed experiments, MRA
may not be able to produce a better model than ANN, then the
ANN modeling method and its associated model may be
preferred to the MRA method and its model if such a model is
available.

Figures 11 and 12 show a comparison between experimental
values versus predicted values with ±10% error interval
resulted from MRA and ANN (testing dataset) for carbon steel

3000
2000

0.05

0.10

1000

0.15

6 12 18 0
24

B
ur

r 
he

ig
ht

 (
m

m
)

BHF

Clearance

Thickness (mm) 0.65
Hold Values

Surface Plot of burr height vs BHF, Clearance

Clearance

B
H

F

252015105

3000

2500

2000

1500

1000

500

0

Thickness (mm) 0.65
Hold Values

>  
–  
–  
–  
–  
<  0.08

0.08 0.10
0.10 0.12
0.12 0.14
0.14 0.16

0.16

Burr height

Contour Plot of Burr height vs BHF, Clearance

(a)

(b)
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Fig. 7 Artificial neural network structure for carbon steel (3-7-4-1)
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and CRES, respectively. This selection is based on the complete
randomness during training of ANNs and testing dataset
usually has the higher error levels. Again, ANN seems more
efficient in prediction when compared to MRA because it

efficiently handles nonlinear relations between different inputs
and outputs even if this nonlinearity does not follow any known
curve.

Fig. 8 Artificial neural network structure for CRES (3-7-7-1)

Fig. 9 Experimental versus predicted values of burrs height for
CRES Fig. 10 Experimental versus predicted values of burrs height for

carbon steel

Table 5 Summary of the ANNs parameters

Neural network
parameters

First ANN
(carbon steel)

Second ANN
(CRES)

Network architecture 3-7-4-1 3-7-7-1
Number of hidden layer 2 2
Transfer function Sigmoid: input-1st

hidden layer-2nd hidden
layer-output layer

Sigmoid: input-1st
hidden layer-2nd hidden
layer-output layer

Number of training examples 30 30
Number of testing examples 10 10
Learning rate 0.45 0.15
Momentum factor 0.6 0.07
Number of epochs 401 601
Mean squared error (MSE) 0.004691 0.002361
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6. Conclusions

In this study, MRA and feed forward backpropagation ANN
have been used for prediction of the burrs height in blanking
process under different process parameters. Modeling the
blanking process using MRA and ANN approaches provides
a systematic and effective methodology for the prediction. Both
MRA and ANN revealed that clearance and BHF were the
important factors that influence the response.

The results of ANNmodels show close matching between the
model outputs and the experimental outputs. Hence, this model

can be used efficiently for prediction potentials for non-
experimental pattern which in turn save experimental time and
cost. It was shown that ANN performs well in mapping nonlinear
relationship between inputs and outputs. If both MRA and ANN
models considered they will provide statistically satisfactory
prediction results. ANN methodology consumes lesser time and
gives higher accuracy. Hence, modeling the blanking process
using ANN is more effective compared with MRA. The
developedmodelingmethods in this article can aid the prediction,
optimization, and improvement of blanking process and the
selection of proper parameters for each engineering material.

Fig. 11 Burrs height experimental versus predicted values from MRA and ANN for carbon steel

Fig. 12 Burrs height experimental versus predicted values from MRA and ANN for CRES
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